
In-place sort algorithm by tournament

	 	 	 	 	 	 Shuji Kaya

1. Overview

 This document's purpose is a presentation that a sort algorithm is different from ever issued. I named it "Section
top sort".

 Cardinal sort method is a tournament bracket to choose a champion, and repetition of tournament for next any
ranks until the end of data.

 Ever known sort algorithms by tournament always demand memory area for tournament result besides the
sorting array. 2)3) However, this sorting doesn't need memory area except for the sorting array basically. It
memorizes tournament result inside of the sorting array. It uses O(log N) stack for recursive call. But deleting
recursive call is possible by modification.

 It is classified into in-place sort, and unstable sort. Basic sort method is exchange. It becomes hybrid of
exchange and selection in best speed up version.

Speed performance : minimum time O(N log N), maximum time O(N^2), average time O(N^2).

I have tried speed up alteration. This document includes these trials.

I guess that both maximum and average time become O(N log N) in best one, but I have not got the evidence
yet. Even fastest one, it is slower than quicksort.

2. Detailed explanation

2-1. Condition

* Sort data must be in an array, accessed by index number.. The index number must start from 0. The index
number is essential of this sort. this sorting can't treat non-array structure.

* The array length and 2^N (N:natural number) equal to or first exceed value from array length are used in the

process. These are necessary in advance.

* Random access of each element in the array is necessary. Whole array stored in memory at once is not
necessary.

2-2. Method

 Thinking a tournament bracket above sort data array laid in horizontal courses.

Undermost layer first rounds stand on sections of 2 elements. Array is divided into these 2 elements sections
from the head to the tail.

Next layer second rounds stand on sections of 4 elements. Array is divided into these 4 elements sections from
the head to the tail.

Similarly, the bracket continues up to the final round. Sections of 8 elements, sections of 16 elements, ... until
sections of 2^N elements, the array is divided into stratification.

The tournament match content is comparison between elements. If later element wins former element, these are
exchanged. After the match, these are arranged.

After the all first rounds, in all sections of 2 elements, winner (the top of the section) sits former (head) location.

As second rounds, in all sections of 4 elements, the match between top (head) of 2-elements sections plays. In
all sections of 4 elements, the top of the section goes to the head of the section.

In the same way, in all sections of all layers, the two low layer section tops play the match to decide high layer
top.

After the final round match of the tournament, the champion (element to be sorted first) sits the head of the array.

Champion graduates from the sorting matches.

The top element of rest is chosen and is set at the head of rest by similar tournament. Runners-up is sorted.

�1

Repeat similar tournament matches until whole rank is decided. When no pending rank remains, the sort is
completed.

 When deciding runners-up and after, whole new tournament round matches are not necessary.

In all sections of 2^k (k = 1, 2, 3 ... N-1) size, the top element in it already sits the head of it.

By dividing the rest into sections as large as possible and playing the matches between top of these sections,
the rank element is decided.

The expression "top element in it already sits" is not always right. The relation is sometimes broken.

So the renaturation of this relation is necessary. The detail method will be described later.

 Program list of this sorting is shown below. (All program list in this document is C-language)

 First function is the match play process.

Input argument 'superior' is former index number and 'inferior' is later index number.

This routine sets each element to the proper location in these.

void top_match_for_location(unsigned int superior, unsigned int inferior) {

if (inferior >= amount) // If index number exceeds array length (amount), do nothing.
return;

if (win(inferior, superior)) { // Comparison process
exchange(inferior, superior); // Exchange process
down_to_the_section(inferior); // Rearrange process to set top element

// at head location in the section.
}

}

 Without exchange, the rule "Section top element sits head location" is held.

At the superior location with exchange, the rule is clear to be held, because the newcomer element surpasses
the top until then. Only at the inferior location with exchange, the rearrange process is necessary to execute.

 Second function is the process to get maximum section size (amount of element) that regards the location (index
number) as the top.

Below figure is an array of 16 elements.

 This array is divided into sections of 2, 4, until 8. These tops are set to the head (colored location).

The maximum size easily comes out from the binary of index number. Seeing binary from least significant bit, first
1 value is the maximum size. For example, when index binary is 0b???1000, the location is the top of 0b1000 (8)
elements section. When index is odd number 0x?????1, it is the top of 1 element section.

When index is 0, the result 2^(N-1) is impossible to calculate from index. The result is calculated from 2^N. In
fact, this routine is not called with argument 0, but infinite loop happens at the case. The branch is added for
safety.

�2

Array of Length=16

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary 0b0000 0b0001 0b0010 0b0011 0b0100 0b0101 0b0110 0b0111 0b1000 0b1001 0b1010 0b1011 0b1100 0b1101 0b1110 0b1111

Section1

Section2

Section4

Section8

Array

Size 8 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1

unsigned int section_size_from_top(unsigned int section_top) {

unsigned int section_size;

if (section_top == 0) {
return (maximum_size / 2); // maximum_size = 2^N (>= amount)

}
else {

section_size = 1;

while ((section_top & section_size) == 0) {
section_size *= 2;

}
}
return section_size;

}

 Third function is main process of sorting.

It is the same description as the explanation so far.

Sorting is completed by 2 loops. One is to decide champion (0th index). Other is to decide later rank (1st index
and after).

void section_top_sort() {

unsigned int size, distance, non_sorted, index;

for (size = 2, distance = 1; distance < amount; size *= 2, distance *= 2) {
for (index = 0; index < amount; index += size) {

top_match_for_location(index, index + distance);
}

}

for (non_sorted = 1; non_sorted < amount; non_sorted++) {
for (index = non_sorted; index < amount;) {

index += section_size_from_top(index);
top_match_for_location(non_sorted, index);

}
}

}

 Last function is rearrange process to set the top element to the head location in the section.

Below figure is the case that new element from former location comes section of 16 elements.

 Black element is an newcomer.

Just the same as the process of runner-up and after rank, the section is divided into sections as large as
possible. But the size calculation is more simple. Candidate locations are calculated adding numbers from 1, and
numbers repeating double, until the section size.

(That is equivalent to searching from bottom in binary search tree.)

If there is an exchange in a match, this routine is called in recursive.

�3

Candidates section of 16

Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15

Binary 0b0000 0b0001 0b0010 0b0011 0b0100 0b0101 0b0110 0b0111 0b1000 0b1001 0b1010 0b1011 0b1100 0b1101 0b1110 0b1111

Top +1 +2 +4 +8

void down_to_the_section(unsigned int section_top_location) {

unsigned int distance;
unsigned int section_size = section_size_from_top(section_top_location);

for (distance = 1; distance < section_size; distance *= 2) {
top_match_for_location(section_top_location, section_top_location + distance);

}
}

This sort all particular program list is end here. General part of sorting is omitted.

 More concrete behavior of this sorting is repeated below.

(1) Divide the array into sections of 2 elements from front to back. Play matches between next elements in
sections. Set winner (top) to front (head), loser (bottom) to back (tail) in these sections.

(2) Divide the array into sections of 4 elements [including two (1)-sections] from front to back. Play the match
between top elements of next (1)-sections in it. Because winner was set to head by (1)-matches, play the match
between elements at head location of (1)-sections. Top of 4 elements is set to head location.

If no exchange accrues, (1)-rule is kept. If an exchange accrues, the promotion element keeps (1)-rule, but the
demotion element can break (1)-rule of the section. In (1)-section of demotion element, play (1)-match between
next elements to keep (1)-rule.

(3) Divide the array into sections of 8 elements [including two (2)-sections] from front to back. Play matches
between top elements of (2)-sections in it. Because winner was set head by (2)-matches, play matches between
elements at head location of (2)-sections. Top of 8 elements is set to head location.

If no exchange accrues, (1)-rule and (2)-rule are kept. If an exchange accrues, the promotion element keeps (1)
(2)-rule, but the demotion element can break (1)(2)-rule of the section. In (1)-section of the demotion element,
play (1)-match. And in (2)-section of the demotion element, play (2)-match. (1)(2)-rule are kept again. If an
exchange accrues again by (2)-match, play (1)-match in (1)-section of the demotion element, to keep (1)-rule.

(4) Repeat the same process until 2^N size section (2^N >= array length), that covers whole array. Champion sits
the head location of array. And in each section of every 2^k (k= 1 ... N-1) size layer, the top element of the
section sits at the head location.

(5) Champion graduates the matches. The matches to choose the top of the rest elements continue.

After champion element, section of 1 element (top itself only), section of 2 elements (its head is top), section of 4
elements (its head is top) ... follow.

Runner-up element is the strongest of these rest section tops.

If an exchange accrues in runner-up decision matches, in the demotion element section, plays matches of rule
remake process like (1)(2)(3). Repeat it until no exchange. The rule "The section top sits at head location" is kept
by that.

The maximum section size regarding the location as the top, is calculated from index number binary.

(6) Set following rank elements to the fitted location by repeating the same way as previous.

Divide the unsettled part to sections as large as possible, play matches between tops and set the winner to the
foremost location. Repeat it until sort finishes.

 Thinking the case of a draw. In a match, elements between player elements are no regard. If a draw element with
either player exists between player elements, the draw element order becomes upside down. In conclusion, this
sorting is unstable.

 If draw elements must follow the original order, prepare the same size index array as data, and set order in it.
Whenever an exchange accrues, exchange the same location of this index array. When a match is draw,
compare the number in this index array and judge the original front side element as the winner. It is just same as
another unstable sort.

�4

3. Characteristics

 First theme is execution time.

When dividing the time into 3 parts, 1.comparison process, 2.exchange process, 3.other sort process, other sort
process is too small to affect without doubt. Comparison count and exchange count are considerable points.
The measured result is shown chapter 5. Below conjecture comes out.

Comparison count : minimum = (N log2 N)/2, maximum = (N-1)*N/2, average = O(N^2). (The formula is hard to
figure.)

Exchange count : minimum = 0, maximum = (N-1)*N/2, average = (N-1)*N/4

When amount N is very large, larger count conceivably effects performance.

Minimum time O(N log N), maximum time O(N^2), average time O(N^2) are conclusion.

 The shorter section rearrangement process time is, rephrasing, the fewer exchange count is, the sorting ends
faster. In faster case, comparisons are omitted by a law "The element that wins the section's top clearly wins all
elements in the section".

Saying it with initial data distribution, the former strong element locates and the later weak element locates, the
sorting ends faster. The best case is that originally all element follows sort order. The worst case is just the
opposite order. The worst case needs the same time as bubble sort.

 Second theme is memory.

Sort array is the only thing to occupy memory through the process. No extra work area is necessary.

But log2 N stack area is clearly consumed by recursive call.

 Last theme is merit.

* Elements are sorted from the array's head. The fixed range is clear in all moments in sorting. This sorting fits to
partial sort, like the aim is only top 100. And this sorting can output sorted elements at the moment fixed,
before the sort is completed.

* This sorting will have good performance in parallel computing, I think. A real tournament is almost done in
parallel, that is the evidence. And the beginning of this sorting resembles to sorting network algorithm. I guess
this sorting may be more suitable for real CPU than network algorithms, when computing thread amount is very
few compared with the sorted item amount. This sorting can terminate the sorting if the data are in order. This
may help to avoid waste of threads.

* This sorting will have good relation with cache, I think, in the case whole data can't exist in memory at once
and disk/network communication in sorting is necessary. The same element sits candidate location and it is
used in comparison repeatedly. And if exchange arises, referred elements in successive comparison and
exchange, is commonly in narrow range nearby.

�5

4. Alteration

 This sorting basic version speed is slow. Trying speed up of the version.

I have tried to make 5 versions. This chapter is an archive of these trials.

4-1. Less conflict

 The main time loss is when an element demotion accrues. "The top of the section sits the head of it" rule
rearrangement process is it. The fewer this element demotion count is, successive comparison and exchange
count become fewer. In conclusion, the sorting ends faster.

 Thinking decrement way of element demotion time. It is to stop the exchange in every match and only memorize
the winner location. Exchange is limited only one time between the strongest element and the top location at
last.

"down_to_the_section" process changes like below.

void down_to_the_section_1exchange_only(unsigned int section_top_location) {

unsigned int distance;
unsigned int really_top, index;
unsigned int section_size = section_size_from_top(section_top_location);

really_top = section_top_location;
for (distance = 1; distance < section_size; distance *= 2) {

index = section_top_location + distance;
if (index >= amount)

break;
if (win(index, really_top))

really_top = index;
}

if (section_top_location != really_top) {
exchange(really_top, section_top_location);
down_to_the_section_1exchange_only(really_top);

}
}

 When deciding runners-up and after, same alteration like this is possible. I omit the program list because the
difference is just same.

 By these alterations, sort method becomes hybrid of exchange and selection.

 In this C-language program list, "goto" statement can take the place of recursive call
“down_to_the_section_1exchange_only". It releases this sorting from recursive stack consumption.

The dirty program list that derogates from structure programming, is omitted.

 As shown in measurement of chapter 5, minimum count stays the same, but maximum/average count improve.
Basic version speed O(N^2) is multiplication of elements amount N and O(N) time per one element. I presume
that this modification time per one element becomes O(log N), because recursive rearrangement is cut. The
speed becomes O(N log N), I guess. But I have not got the confirmation from measure result. For example,
maximum count data of 8 elements are "5 4 6 3 7 2 1 0", "6 5 4 3 7 2 1 0". These are hard to find the rule. I can't
think out the formula of maximum case. Average case, too.

 Other trial later are hard to say speed up. It is the present best version of this sorting algorithm.

4-2. Full section exchange

 There is another way to keep the rule "Top element of the section sits the head of it". It is to exchange the whole
sections, not only the head elements. However, it can apply to only the match between the same size sections.
The possible point of this modification is limited.

I omit the detailed points and program list, because it is not enough to explain.

�6

 When array length is not 2^N, it is necessary to fill weakest elements after the array tail until 2^N. This extra
huge memory necessity defeats this modification practicability. 2^(N-1)+1 length array sort speed is the same as
2^N length array. In many cases, speed clearly becomes slow. Even a 2^N length array sort, comparison count
deceases, but exchange count increases. Apparent improvement from chapter 4-1 is out of hope.

Maximum/average case is hard to think out like above try. (Maximum count data of 8 elements is "3 2 7 1 6 5 4
0".)

4-3. Two top

 This sorting algorithm uses the rule "Top element of the section sits the head of it”. How does one more
additional rule change the speed? I try to add a rule "Second top element of the section sits the center of it".

I omit detailed explanation because these deviate from the essence of this thesis.

 As shown in measurement in chapter 5, both comparison/exchange count increase through minimum/maximum/
average than chapter 4-1. Some results are no good, because the program still remains some bugs (in the case
runner-up location is out of array).

 The conclusion is, increasing rule amount gives effect to the sort speed slower.

Maximum/average case is hard to think out like above tries. (Maximum count data of 8 elements are "5 4 7 6 1 0
3 2", "5 4 7 6 2 1 3 0", "5 4 7 6 3 2 1 0", "6 5 7 4 1 0 3 2", "6 5 7 4 2 1 3 0", "6 5 7 4 3 2 1 0", "7 6 5 4 1 0 3 2", "7
6 5 4 2 1 3 0", "7 6 5 4 3 2 1 0".)

4-4. Set next

 Thinking the data that the champion locates at the head of second half part of the array. After some advance in
this sorting, champion at the second half section head is exchanged with an element X at first half section head
(whole array's head). X comes to the second half section head. Later step, X will be compared with each section
tops in first half. But X has been already first half section top. So these comparisons are wasteful.

Like this example, the previous tournament record is lost by exchange, and sometimes just same comparison as
past is doubled. It is the cause of speed down. The solution is, to take an area of match results in memory, to
record in, and to check these before playing matches. Huge memory is necessary for it and this sorting loses
merit, in-place.

If limiting only the case X at this chapter top, it can be modified without additional memory. The way is to stop
jumping X to the second half, to shift X to the next location of the sorted area in first half. Instead of X,
substitution element that doesn't break the rule, jumps to second half head.

I omit detailed modification points because these deviate from the essence of this thesis.

 As shown in measurement in chapter 5, comparison count decreases, but exchange count increases from
chapter 4-1. Exchange needs writing to device. Normally writing occupies more time than reading. I presume it is
not an improvement of speed-up.

Maximum/average case is hard to think out like above tries. (Maximum count data of 8 elements is "7 5 6 4 3 1 2
0”.)

4-5. ’Both sides now’

 Thinking opposite direction process. In the section of 2 elements, the step to set the top element to the head
location is, also the step to set the bottom element to the tail location. In the section of 4 elements, the step to
set the top element to the head location do not overlap the step to set the bottom element to the tail location.
These can execute in parallel. Similarly, moreover section top setting step doesn't overlap bottom setting step
and these can execute in parallel.

 However, top/bottom rearrange process in the section sometimes overlaps. This process is very complex. In my
opinion, this may be the most complex and long sorting procedure.

 I omit the explanation because it transcends my ability. I have made a program to pass all my test data. But I
can't decide it the completed final one or not.

 As shown in measurement in chapter 5, normally both comparison/exchange count increase from chapter 4-1. It
is not an improvement of speed-up. Maximum/average case is hard to think out like above tries. (Maximum
count data of 8 elements are "7 5 6 2 4 3 1 0", "7 5 6 3 4 1 2 0", "7 6 4 2 5 3 1 0", "7 6 4 3 5 1 2 0”.)

 When the number of array elements is limited to 4, it is the fastest sort. Comparison/exchange ends until 5
count. In the section of 4 elements, top/bottom rearrange process is not necessary. Top/bottom relation in the
section of 2 elements is held without operation. Even 8 elements array result, both comparison/exchange count
are still less than 4-1. Some scope for consideration may rest.

�7

4-6. Other ideas

 There are some other ideas, these clearly do not improve theoretical performance. I have not examined by
program. But these may be effective in some case. Below writings are memorandum.

 Until now, elements included one section is always continuous. However, section can be consisted from discrete
elements. One way is to scan index number binary from MSB, instead of LSB. Thinking 8 data sort as an
example. Index 0b0xx and index 0b1xx are arranged in a same section of 2 elements. (xx is the same number.)

Theoretical performance is just the same. But the time distribution by data order is changed. Real data does not
agree uniformly distribution. There is something deviation in it, like strong elements gather in one district and
weak elements gather in another. By adjustment of the partition to interpret index number binary, actual sort time
may be possible to shorten in some cases.

 Instead of champion from array top, a way to select tailender from array tail is also conceivable. It changes only
sort direction, like ascending or descending switch. Sort speed is just same. In basic version, champion always
stays foremost of data after the final match of tournament tree. If choosing tailender, unless the data amount is
2^N, tailender doesn't stay very back after the final tournament match. (The final match is skipped because of
out of range.)

If tail side sorted data is necessary earlier while sorting, this sorting can accommodate the case.

5. Time measurement

 The whole program list used in operation verification and speed measurement is placed at below location.

http://boogieshake.web.fc2.com/sort/section_top_sort.c

 The measurement result is shown in the table from next page. Detailed evaluation is omitted because essential
points are already mentioned previously.

 Until 1 - 12 amount data, the whole permutation are made and sorted. These minimum/maximum/average agree
with theoretical values.

 100/512/1000 amount data minimum/maximum/average time are the result of only some sample data. These
differ from theoretical values.

 Quicksort value in gcc is shown at the last of this table. Only comparison count can be measured as a library
usage. Because it is clear that this sorting loses at present phase, I don’t examine it moreover.

�8

�9

Compare and exchange count measurement in Sorting

Kind Data amount Total line Compare Exchange

minimum maximum average minimum maximum average

Section Top Sort 1 1 0 0 0.000000 0 0 0.000000

 [Basic] 2 2 1 1 1.000000 0 1 0.500000

3 6 3 3 3.000000 0 3 1.500000

4 24 4 6 5.333333 0 6 3.000000

5 120 8 10 9.333333 0 10 5.000000

6 720 9 15 13.000000 0 15 7.500000

7 5040 11 21 18.333334 0 21 10.500000

8 40320 12 28 23.333334 0 28 14.000000

9 362880 20 36 31.333334 0 36 18.000000

10 3628800 21 45 37.666668 0 45 22.500000

11 39916800 23 55 46.333333 0 55 27.500000

12 479001600 24 66 54.000000 0 66 33.000000

100 100 3451 4263 3901.920000 2040 2893 2482.380000

512 512 65535 107675 102484.134766 60513 70675 65489.023438

1000 1000 65535 405052 391165.900000 65535 267105 250076.896000

Section Top Sort 1 1 0 0 0.000000 0 0 0.000000

 [Less conflict] 2 2 1 1 1.000000 0 1 0.500000

3 6 3 3 3.000000 0 3 1.500000

4 24 4 6 5.333333 0 6 3.000000

5 120 8 10 9.000000 0 8 3.933333

6 720 9 14 12.033334 0 11 5.900000

7 5040 11 20 16.995237 0 15 7.677778

8 40320 12 27 21.298412 0 20 10.465873

9 362880 20 35 28.061905 0 22 11.408995

10 3628800 21 39 31.463148 0 27 13.755274

11 39916800 23 46 37.599262 0 30 15.753829

12 479001600 24 54 42.750179 0 36 19.101740

100 100 1074 1249 1161.850000 302 377 336.980000

512 512 10430 11294 10900.849609 2364 2584 2477.164062

1000 1000 24502 26346 25445.341000 5061 5421 5245.574000

Section Top Sort 1 1 0 0 0.000000 0 0 0.000000

 [Full exchange] 2 2 1 1 1.000000 0 1 0.500000

3 6 4 5 4.666667 0 6 3.000000

4 24 4 5 4.666667 0 6 3.000000

5 120 12 22 18.380952 0 23 11.771429

6 720 12 22 18.380952 0 23 11.771429

7 5040 12 22 18.380952 0 23 11.771429

8 40320 12 22 18.380952 0 23 11.771429

9 362880 Out of time Out of time

10 3628800 Out of time Out of time

11 39916800 Out of time Out of time

12 479001600 Out of time Out of time

100 100 1112 1618 1358.940000 338 605 469.910000

512 512 9899 10830 10446.103516 2845 3737 3253.757812

1000 1000 24211 26457 25560.028000 6060 8135 7197.247000

�10

Kind Data amount Total line Compare Exchange

minimum maximum average minimum maximum average

Two Top Sort 1 1 0 0 0.000000 1 1 1.000000

2 2 2 2 2.000000 1 2 1.500000

3 6 4 5 4.666667 1 3 2.166667

4 24 7 7 7.000000 2 7 4.333333

5 120 10 13 12.000000 1 8 4.733333

6 720 NG NG

7 5040 14 21 18.009524 2 17 9.357143

8 40320 17 27 22.842857 3 23 12.766667

9 362880 26 38 34.001587 4 25 14.512698

10 3628800 NG NG

11 39916800 NG NG

12 479001600 NG NG

100 100 NG NG

512 512 29664 36859 33064.343750 17361 22830 19948.535156

1000 1000 NG NG

Section Top Sort 1 1 0 0 0.000000 0 0 0.000000

 [Set Next] 2 2 1 1 1.000000 0 1 0.500000

3 6 2 3 2.666667 0 3 1.500000

4 24 4 6 4.833333 0 6 3.000000

5 120 5 10 8.000000 0 9 4.733333

6 720 8 13 10.633333 0 14 7.055556

7 5040 11 19 14.904762 0 20 9.830159

8 40320 12 24 18.524603 0 26 13.112698

9 362880 12 34 25.753483 0 27 13.474956

10 3628800 17 37 28.135573 0 33 16.468307

11 39916800 22 43 32.998617 0 41 20.324998

12 479001600 23 50 37.265566 0 49 24.923850

100 100 970 1134 1049.19000 402 522 464.920000

512 512 9772 10588 10194.183594 3241 3681 3429.621094

1000 1000 22781 24627 23875.151000 6881 7576 7248.754000

Both sides now sort 1 1 0 0 0.000000 0 0 0.000000

2 2 1 1 1.000000 0 1 0.500000

3 6 3 3 3.000000 0 3 1.500000

4 24 5 5 5.000000 0 5 2.666667

5 120 9 9 9.000000 0 8 4.133333

6 720 11 13 11.933333 0 12 6.011111

7 5040 14 18 16.142857 0 15 7.557143

8 40320 17 23 20.571429 0 19 9.917460

9 362880 23 33 29.185185 0 22 12.194709

10 3628800 25 37 32.605926 0 27 14.482081

11 39916800 28 44 38.304185 0 30 16.427016

12 479001600 31 53 44.475075 0 37 19.599656

100 100 1156 1344 1257.900000 320 417 373.320000

512 512 11786 13679 12766.183594 2627 3207 2920.757812

1000 1000 28525 32808 30573.943000 5800 7148 6328.246000

6. Conclusion

 This document content is a sort algorithm explanation of my idea. It includes fundamental version and some
improvement trials of speed up. Since this sorting is possible to be different from a previously announced one
and to be useful in some purpose - partial sort, parallel sort, etc., it is documented and shown here.

 Remain problem is, maximum and average time mathematical expression of this sorting fastest version.
Presently it is only a conjecture. Providing evidence is necessary.

 As future development, against the sentence that this sorting has affinity with parallel computing, actual
algorithm and program in parallel process are necessary to prepare and to confirm.

7. References

 Because I am not a scholar, all referred article is limited to that everyone can see in internet.

I referred known sort algorithm and technical terms from 1). I searched the papers including ‘sort’ in title from
Cornell University Library, and checked recently sort algorithm usage tendency from 4) 5).

1) Wikipedia "Sorting algorithm" article and all its related article

2) Wikipedia "Tournament sort" article

3) arXiv.org > cs > arXiv:1402.2712 "Dynamic Partial Sorting"

4) arXiv.org > cs > arXiv:1609.04471 "Sort Race"

5) arXiv.org > cs > arXiv:1511.03404 "Comparison of parallel sorting algorithms"

�11

Kind Data amount Total line Compare Exchange

minimum maximum average minimum maximum average

*gcc q-sort 1 1 0 0 0.000000

(For comparison) 2 2 1 1 1.000000

3 6 2 3 2.666667

4 24 3 6 4.916667

5 120 4 10 7.716667

6 720 5 15 11.050000

7 5040 6 21 14.907143 Can’t count

8 40320 14 29 19.171354

9 362880 16 36 22.888112

10 3628800 18 47 27.061262

11 39916800 20 55 31.299797

12 479001600 22 70 35.746590

100 100 603 699 641.710000

512 512 4416 5064 4588.541016

1000 1000 9661 10708 10003.768000

